50. An X-Ray Diffraction Determination of the Crystal and Molecular Structure of "Methyl Metadithiophosphonate," $\left[\mathrm{CH}_{3} \cdot \mathrm{PS}_{2}\right]_{2}$.

By P. J. Wheatley.

A three-dimensional X-ray diffraction analysis of methyl metadithiophosphonate $\mathrm{CH}_{3} \cdot \mathrm{PS}_{2}$ shows that the molecules are dimeric and contain a four-membered ring of two sulphur and two phosphorus atoms. The molecules have crystallographic symmetry $2 / m$. The P-S distance within the ring corresponds to a single bond, and has a length $2 \cdot 14 \AA$. The external $P-S$ distance corresponds to a double bond, with a length $1.94 \AA$.
An improved method of synthesis of the so-called metadithiophosphonates or thionophosphine sulphides has recently been discovered, ${ }^{1}$ and a study of the properties confirms the earlier conclusion ${ }^{2}$ that the compounds are dimers $\left[\mathrm{R} \cdot \mathrm{PS}_{2}\right]_{2}$. Fay and Lakelma ${ }^{2 a}$ have suggested that the compounds have the structure (I), whereas Lecher et al. ${ }^{2 c}$ prefer an ionic formulation (II). The purpose of the present analysis was to determine the exact nature of these compounds.
(I)

Experimental
$\left[\mathrm{CH}_{3} \cdot \mathrm{PS}_{2}\right]_{2} . \quad M=220.3$. Monoclinic. $a=6.79_{\mathbf{a}} \pm 0.030, b=7.04_{6} \pm 0.030, c=9.20_{7} \pm$ $0.040 \AA, \quad \beta=92^{\circ} \quad 18^{\prime} \pm 0.5^{\circ} . \quad U=440 \AA^{3} . \quad Z=2 . \quad D_{c}=1 \cdot 661 . \quad F(000)=224 . \quad$ Space group $I 2 / m\left(C_{2 h}^{3}\right.$, No. 12). $\mathrm{Cu}-K_{\alpha}$ radiation $(\lambda=1.542 \AA)$, single crystal rotation and Weissenberg photographs.

The crystals are very hygroscopic and had to be handled in a dry-box. They were sealed in thin-walled Pyrex capillaries for the photographic work. The crystals usually consisted of roughly spherical lumps with no definite faces, but occasionally a column could be found with the direction of elongation parallel to $[b]$. A suitable set of intensity photographs was obtained of the $h 0 l$ zone, the intensities being estimated visually by means of a calibrated strip prepared from the same crystal. The crystals were small and uniform and no correction was made for absorption ($\mu=123 \mathrm{~cm} .^{-1}$). The systematic absences in the $h 0 l$ and $h 1 l$ zones showed that the space group was $I 2$, $I m$, or $I 2 / \mathrm{m}$.

An examination of the $h 0 l$ reflexions showed some very pronounced relations between the intensities. Consequently it was decided to solve the structure by an application of the Sayre relation. ${ }^{3}$ The 26 hol reflexions with the greatest unitary structure factors were selected, and many relations were obtained between the phases, none of which conflicted. A Fourier synthesis with these 26 planes yielded an adequate picture of the molecule in projection down the $[b]$ axis. A few cycles of refinement confirmed the correctness of the structure, and it was evident that the space group was, in fact, $I 2 / \mathrm{m}$, and that the molecule had crystallographic symmetry $2 / m$. It was also evident that the structure could be refined three-dimensionally with little additional computation, since three of the atoms must lie in the $h 0 l$ plane, and the other atom along the y axis.

Accordingly, intensities were collected for the layers $h 0 l-h 3 l$ and refinement was carried out with the 254 reflexions observed to be non-zero. Although the k index did not run high enough to refine the only non-zero y co-ordinate by line syntheses along $y=0$, there were about 20 reflexions that were very sensitive to the value of this co-ordinate. By a careful consideration of these reflexions the y co-ordinate of atom S_{1} could be fixed within 0.001 of the cell side. The other co-ordinates were refined in the conventional way by means of Fourier and difference syntheses until the R factor for all 254 observed planes had dropped to $11 \cdot 2 \%$.
${ }_{1}^{1}$ Newallis, Chupp, and Groenweghe, J. Org. Chem., 1961, 26, in the press.
2 (a) Fay and Lakelma, J. Amer. Chem. Soc., 1952, 74, 4933; (b) Kinnear and Perren, J., 1952, 3437; (c) Lecher, Greenwood, Whitehouse, and Chao, J. Amer. Chem, Soc., 1956. 78, 5018.
${ }^{3}$ Sayre, Acta Cryst., 1952, 5, 60.

The scattering factors used were those of Tomiie and Stam ${ }^{4}$ for the phosphorus and sulphur atoms, and that of Berghuis et al. ${ }^{5}$ for the carbon atoms. Hydrogen atoms were ignored. A temperature factor of $B=2.0 \AA^{2}$ proved adequate throughout. All layer lines were independently placed on an absolute scale by comparison with the calculated structure factors, the scale factor for each layer being altered, if necessary, as the refinement proceeded.

Table 1.
Fractional atomic co-ordinates.

	Atom	x / a	y / b	z / c
S_{1}		0	$0 \cdot 225$	0
S_{2}		0.375	0	0.202
P		0.098	0	$0 \cdot 142$
C		-0.062	0	$0 \cdot 297$

Results

The co-ordinates of the atoms are given in Table 1, and the observed and calculated structure factors in Table 2. Fig. 1 shows the final three-dimensional Fourier section at $y=0$, and Fig. 2 gives the labelling of the atoms, the bond lengths, and the bond angles. The $\mathrm{P}-\mathrm{S}_{2}$ distance agrees well with the similar bond distance found in the phosphorus sulphides ($1.94-1.96 \AA$), ${ }^{6}$ and is a little shorter than that found in 1,2 -dimethyl-1,2-diphenyldiphosphine disulphide ($1.98 \AA$). ${ }^{7}$ It is estimated that the P-S distances are accurate to ± 0.015 and the P-C distance to $\pm 0.03 \AA$. The angles involving only

Fig. 2. The bond lengths, bond angles, and the labelling of the atoms.

Fig. 1. Section of the molecule in the $h 0 l$ plane. (The contours are drawn at equal arbitrary intervals.)
phosphorus and sulphur atoms are estimated to be accurate to $\pm 1^{\circ}$, and the angles involving the carbon atom to $\pm 2^{\circ}$. The $\mathrm{P}-\mathrm{CH}_{3}$ distance is in accord with those found recently in organophosphorus compounds ($1.82-1.84 \AA$), ${ }^{7,8}$ provided that no fluorine atoms are attached to the carbon atom. ${ }^{9}$ The $\mathrm{P}_{-\mathrm{S}_{1}}$ distance $(2 \cdot 14 \AA)$ is rather greater than the corresponding distance found in $\mathrm{P}_{4} \mathrm{~S}_{\mathbf{3}}(2 \cdot 10 \AA)^{10}$ and in the higher phosphorus sulphides ($2.08-2.085 \AA$), ${ }^{6}$ but agrees exactly with that predicted from Pauling's covalent radii ${ }^{11}$ for a single bond. It seems probable, therefore, that Fay and Lakelma's structure (I) adequately represents the bonding in the metadithiophosphonates.

[^0]The angles within the four-membered ring are shown in Fig. 2. The S \cdots S distance across the ring is $3 \cdot 171 \AA$, and the $P \cdots P$ distance is $2 \cdot 886 \AA$. The distance between two sulphur atoms in adjacent molecules along the $[b]$ axis is $3.875 \AA$. The shortest contacts between the molecule at the origin and the one at the centre of the cell are: $\mathrm{P} \cdots \mathrm{S}_{2}, 3.806 ; \mathrm{C} \cdots \mathrm{S}_{2}, 3.745 ; \mathrm{S}_{2} \cdots \mathrm{~S}_{2}, 4.025 ; \mathrm{S}_{1} \cdots \mathrm{~S}_{2}, 3 \cdot 431 ; \mathrm{C} \cdots \mathrm{S}_{1}, 4.068 \AA$.

Table 2.
Observed and calculated structure factors for one half-molecule (i.e., twice the asymmetric unit).

hol	For	F_{e}	hol	F_{0}	F_{c}	$h 1 l$	F_{0}	F_{e}	h2l	Fo	F_{c}	h3l	F_{o}	F_{c}
2.0 .0	$18 \cdot 61$	18.79	4.0.2	19.23	19.86	4	$3 \cdot 27$	-2.70	4.2.2	$4 \cdot 03$	-4.66	1.3.2	11.99	-10.97
	$5 \cdot 54$	$-5 \cdot 60$	4	$5 \cdot 09$	$5 \cdot 35$				4	1.82	-0.78	4	$3 \cdot 11$	$-2 \cdot 40$
8	$4 \cdot 93$	$6 \cdot 46$	6	$1 \cdot 84$	$0 \cdot 40$	8.1.1	$3 \cdot 65$	$4 \cdot 33$	6	$6 \cdot 11$	-6.64			
			8	$5 \cdot 15$	6.48	,	1.37	-1.71	8	$4 \cdot 17$	-3.59	1.3.6	$2 \cdot 09$	-2.50
0.0.2	$4 \cdot 44$	$-4 \cdot 3$	10	$4 \cdot 04$	2.96							10	6.07	-6.43
4	$5 \cdot 99$	$6 \cdot 13$				T.1.2	14.71	15.82	5.2.1	$2 \cdot 38$	-2.70			
6	13.22	$13 \cdot 03$	5.0.1	$2 \cdot 30$	-1.43		$15 \cdot 26$	-15.08	- 3	$4 \cdot 93$	-4.73	2.3.3	12.86	$-12 \cdot 66$
5	$4 \cdot 16$	3.75	${ }^{3}$	$10 \cdot 12$	10.73	8	6.57	$5 \cdot 71$	5	$1 \cdot 59$	0.92	5	$2 \cdot 32$	$1 \cdot 53$
10	$4 \cdot 32$	$5 \cdot 40$	5	$8 \cdot 27$	9.80	8	$5 \cdot 72$	4.74	7	$8 \cdot 55$	$-7 \cdot 69$	7	2.44	3.13
			7	$5 \cdot 95$	-4.57	10	$2 \cdot 21$	-2.42				$!$	$8 \cdot 54$	$-9 \cdot 21$
3.0.1	8.32 388	$2 \cdot 92$	${ }^{9}$	$4 \cdot 90$	7.50	2.1.1	$2 \cdot 81$	-2.66	6.2 .2	$2 \cdot 49$	-3.75	3.3.2	16.88	-17.41
3	13.80	13.53	6.0.2	$6 \cdot 66$	$7 \cdot 49$	2.1. 3	10.78	-11.29				3	8.23	-17.09
5	4.55 14.87	2.61 13.60	6.0 4	3.19	$3 \cdot 64$	5	10.78 9.43	-7.74	6.2.4	2.79	$2 \cdot 50$	6	3.01	-2.97
7	14.87	$13 \cdot 60$	6	$7 \cdot 68$	7.91	3	$8 \cdot 05$	$8 \cdot 36$	6	$8 \cdot 33$	$-10 \cdot 24$	8	$5 \cdot 73$	-4.98
			8	$2 \cdot 69$	-1.69	11	$3 \cdot 39$	$-4 \cdot 87$						
2.0.2	4-31	$3 \cdot 43$							7.2.1	1.04	$0 \cdot 42$	4.3.1	$9 \cdot 32$	-9.05
4	$4 \cdot 14$	$3 \cdot 47$	$\overline{7} .0 .1$	$4 \cdot 57$	-3.46	3.1.2	10.34	$8 \cdot 35$	-2.15	$6 \cdot 33$	-6.42	3	$3 \cdot 61$	$3 \cdot 30$
6	16.54	17.35	3	6.78	$7 \cdot 26$	4	$4 \cdot 95$	-4.30				5	$3 \cdot 16$	-3.25
10	1.93	1.97	5	$4 \cdot 26$	$4 \cdot 80$	10	$4 \cdot 05$	$5 \cdot 82$	8.2	$1 \cdot 72$	-2.15	7	$1 \cdot 52$	-0.77
						4.1.1	$3 \cdot 07$					9	4.38	$-4 \cdot 47$
3.0.1	1.05 5.15	-0.70 4.93	8.0.2	$\stackrel{2}{2 \cdot 39}$	-1.80	4.1.1	13.84	13.87	1.2.1	1.81	$2 \cdot 06$	5.3.2	2.71	-2.82
5	17.72 $\mathbf{1 7}$	4.93 16.34	4	$3 \cdot 52$	$4 \cdot 24$	5	6.46	-7.34	1.2. 3	$9 \cdot 56$	-9.07	5.3.2	1.72	-1.33
9	3-55	$3 \cdot 31$				9	$3 \cdot 32$	$2 \cdot 35$	5	$19 \cdot 18$	-18.87	8	$5 \cdot 63$	$-5 \cdot 50$
			1.1.0	6.80	$7 \cdot 41$				7	$6 \cdot 15$	5-30			
4.0.2	8.72	8.78	1.1 3	$5 \cdot 42$	6.76	5.1.2	2.15 7.55	-2.08 9.02	11	$5 \cdot 64$ 5.04	-6.39 -4.12	6.3.1	$5 \cdot 73$ 4.35	$-5 \cdot 85$
4	11.66	11.23	7	3.76	-4.69	6	7.59 3.09	9.82 -3.57	11	$5 \cdot 64$	-4.12	5	4.35 2.63	3.59 -2.17
6	3-14	2.87				8	$\mathbf{2 \cdot 2 1}$	-2.02			-7.37			
8	$\stackrel{2}{2 \cdot 38}$	3.91	0.1.1	$13 \cdot 10$	13.37				2.2 .2 4	${ }_{7}^{6.71}$	- 5.99	7.3.2	$5 \cdot 70$	$5 \cdot 50$
10	2.77	0.88	3	$13 \cdot 53$	$-13 \cdot 18$	6.1.5	$3 \cdot 26$	$4 \cdot 42$	6	14.01	-13.61	4	$4 \cdot 73$	-4.26
			5	$5 \cdot 47$	$4 \cdot 95$	7	$2 \cdot 19$	-1.14	8	2.31	-1.72			
5.0.1	8.96	9.07	7	3.71 $\mathbf{2} \cdot 28$	2.94 -1.73				-80	$2 \cdot 34$	-2.52	I.3.2	$5 \cdot 44$	6.32
5.0.1	3.28	3.52	11	$2 \cdot 28$	-1.73	7.1.2	1.88	-0.83		$2 \cdot 3$	-2.52	4	$17 \cdot 19$	-16.77
5	$10 \cdot 08$	10-44				4	$3 \cdot 44$	$4 \cdot 02$				8	$2 \cdot 42$	$1 \cdot 83$
9	$3 \cdot 23$	$1 \cdot 70$	1.1.2	$9 \cdot 68$	-8.18				3.2.1	2.07 6.90	1.52	10	$4 \cdot 12$	-4.13
			4	$3 \cdot 40$	2.76	$\overline{8} .1 .3$	3.83	-4.22	3	$\stackrel{6.90}{9.10}$	-7.75			
6.0.2	$4 \cdot 53$	$5 \cdot 63$							7	$9 \cdot 10$ $7 \cdot 13$	-7.19 -7.56	$\overline{2} .3 .1$	$5 \cdot 34$	-6.49
4	$9 \cdot 81$	11.24	1.1.6	1.30	1.17	t 22 l			9	${ }_{1 \cdot 61}$	-0.83	3	3.32 12.21	4.20 -10.42
6	$3 \cdot 39$	-3.78	8		$5 \cdot 87$	2.2.0	$4 \cdot 47$	-4•14				7	12.21	
			10		-5.07	4	17.91	-18.79				7	$2 \cdot 43$ 4.33	$-3 \cdot 06$ $\mathbf{5 . 1 0}$
7.0.1	8.48	8.51				6	$8 \cdot 10$	$-9 \cdot 42$	4.2 .2 4	${ }^{6 \cdot 33}$	5.19 -6.58	9	$4 \cdot 33$	$5 \cdot 10$
3	$4 \cdot 49$	6.14	1.1	8.88 10.41	$8 \cdot 80$ -10.05				6	9.66	-9.41	3.3.2	$3 \cdot 21$	$2 \cdot 67$
5	1.53	-0.55	5	7.28	-10.05 5.94	0.2.2	22.52 11.34	-24.72 -11.32	8	1.84	-1.61	4	$8 \cdot 31$	-7.35
			7	$5 \cdot 62$	6.93	8	+ ${ }_{5} \cdot \mathbf{2 1}$	- -6.15				6	$2 \cdot 32$	-1.32
8.0.2	$2 \cdot 10$	3.78	9	$7 \cdot 39$	-7.88	10	$\stackrel{5}{1.57}$	- ${ }^{-1.99}$	$\overline{5} .2 .1$	11.68	-12.61	8	3.72	-4.70
			11	$2 \cdot 33$	$3 \cdot 81$				7	11.77	-11.92	10	$2 \cdot 56$	$3 \cdot 31$
1.0.1	29.36	30.54				1.2.1	20.36	-19.83	9	1.57	$1 \cdot 32$		$5 \cdot 81$	
3	13-16	$10 \cdot 97$	3.1.2	16.30	-16.11	1.3	8.07	-6.73				4.3.1	8.81	-6.27 8.44
5	8.08	-5.29	4	14.48	$13 \cdot 77$	5	11.04	-11.41	6.2.4	$3 \cdot 52$	-5.03	5	$8 \cdot 27$	-9.58
7	17.61	17.35	8	$3 \cdot 27$	-2.97	7	1.72	1.96	8	$5 \cdot 52$	$-7 \cdot 17$	7	$9 \cdot 30$	- 1.95
9	3.95	$2 \cdot 01$	10	$1 \cdot 54$	1.94	9	$7 \cdot 37$	-6.08				7	$3 \cdot 30$	-1.95
						11	$5 \cdot 97$	-6.36	7.2.1	10-17	-10.94	5.3.2	4.99	-5.14
$\overline{\text { 2 }}$. 0.2	12.45	12.59	4.1.1	6.34	-5.94						-104	-3	$5 \cdot 04$	$5 \cdot 07$
4	$8 \cdot 27$	9.85	3	9-30	7.67	2.2.2	14.98	$-1.4 .74$	8.2.2	$7 \cdot 05$	-7.60	6	4.81	-5.61
6	$1 \cdot 34$	-1.91	9	$2 \cdot 23$	-3.04	4	12.50	$-11 \cdot 46$	8.2.2	7.05	-7.60	8	$3 \cdot 01$	-3.73
8	11.75	11.60				6	$4 \cdot 54$	$4 \cdot 79$						
10	$4 \cdot 21$	$4 \cdot 50$	5.1.4	$4 \cdot 29$	$4 \cdot 26$	8	10.71	-9.59	h3l			$\overline{6.3 .1}$	$2 \cdot 64$	-2.33
			8	$4 \cdot 07$	-4.27	10	$5 \cdot 47$	-4.60	1.3.0	$1 \cdot 67$	-1.08	5	$2 \cdot 03$	$1 \cdot 61$
3.0.1	18.53	19.87							5	$3 \cdot 22$ 5.79	-4.32	7	$2 \cdot 75$	-2.86
3	$8 \cdot 53$	$7 \cdot 44$	6.1.1	$3 \cdot 45$	-3.51	3.2.1	$15 \cdot 80$	-16.86	7	$5 \cdot 79$	-6.40			
5	$3 \cdot 61$	$5 \cdot 19$	3	7.99	6.87	3	$10 \cdot 20$	$-9 \cdot 56$				7.3.2	$2 \cdot 90$	-2.90
7	$2 \cdot 60$	$2 \cdot 31$	7	$3 \cdot 76$	-3.89	5	$4 \cdot 65$	3•62	0.3.1	$1 \cdot 52$	$3 \cdot 19$	4	1.96	1.54
9	$8 \cdot 05$	$7 \cdot 01$				7	$9 \cdot 85$	-9.38	3	$13 \cdot 19$	-15.24			
11	$2 \cdot 79$	$4 \cdot 16$	7.1.2	$7 \cdot 54$	$8 \cdot 63$	9	$4 \cdot 34$	-3.94	9	1.74	-1.25			

I thank Drs. A. J. Speziale, J. P. Chupp, and P. E. Newallis of the Monsanto Chemical Company, St. Louis, for suggesting this problem and supplying the crystals.

[^0]: 4 Tomiie and Stam, Acta Cryst., 1958, 11, 126.
 ${ }_{5}$ Berghuis, Haanappel, Potters, Loopstra, MacGillavry, and Veenendaal, Acta Cryst., 1955, 8, 478.
 ${ }^{6}$ Vos and Wiebenga, Acta Cryst., 1955, 8, 217 ; van Houten and Wiebenga, ibid., 1957, 10, 156.
 7 Wheatley, J., 1960, 523.
 ${ }^{8}$ Dutta and Woolfson, Acta Cryst., 1961, 14, 178; Hamilton, ibid., 1955, 8, 199.
 ${ }^{9}$ Bowen, Trans. Faraday Soc., 1954, 50, 463; Spencer and Lipscomb, Acta Cryst., 1961, 14, 250.
 ${ }^{10}$ Hassel and Viervoll, Acta Chem. Scand., 1947, 1, 149.
 11 Pauling, "The Nature of the Chemical Bond,"' Cornell University Press, New York, 1940.

